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Comprehensive study of pattern formation in relaxational systems
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We present a comprehensive study of pattern formation in single-field relaxational systems with field-

dependent coefficients. A modulated mean-field theory leads to a form amenable to analysis via the geometric
architecture developed in our earlier work for systems that exhibit phase transitions between global steady
states [Phys. Rev. E 69, 011102 (2004)]. We demonstrate that the phase diagrams for these systems are entirely
determined by a few geometric properties of the field-dependent relaxational coefficient and the local potential.
Numerical simulations support the theoretical predictions.
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The study of the interplay between fluctuations and non-
linearities in spatially extended systems provides insight into
the counterintuitive and yet essential role of noise in many
ordering transitions [1-8]. In these systems, the intensity of
the fluctuations serves as a control parameter dictating the
emergence of spatiotemporal structure. While the seminal
model of noise-induced phase transitions relied on the col-
lective amplification of short-time instabilities and required
the presence of the so-called Stratonovich drift [2], members
of another class of relaxational models exhibit such transi-
tions in the absence of short-time instabilities [5,6] and do
not require a Stratonovich drift. They rely instead on the
existence of a noise-dependent effective equilibrium poten-
tial in the steady state whose qualitative behavior is imper-
vious to a particular interpretation of the noise.

Here we extend to pattern formation phenomena our ear-
lier comprehensive study of relaxational models for Ising-
like phase transitions between homogeneous states [6]. In
particular, we demonstrate via a modulated mean-field ap-
proach that the phase diagram of the system can be described
by one of only four generalized portraits depending on ge-
neric geometric properties of the local potential and field-
dependent relaxational functions. Additionally, we comple-
ment the theory with numerical simulations which verify its
qualitative accuracy.

A generic evolution model of a relaxational space-
dependent and time-dependent field ¢;(r) with field depen-
dent coefficients is given in terms of the set of Langevin
equations

SF
¢,(1) =- F(cpi(t))% +HC(@NIP&@. (1)

Here, i labels a lattice site, {¢})=(¢;,..., @) denotes the
entire set of fields, and the relaxational function I'(¢) and its
square root [I'(¢)]"/? are both positive. The fluctuations & are
Gaussian white noises with zero mean and correlation func-
tions <§,-(t)§j(t’)>=alc?,-_it‘)‘(t—t'). The functional F consists of
a local potential V(¢) and an interaction term, so that
SF1 85¢(t)==V'(¢;)+ L¢;. In our earlier work [6], the opera-
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tor £ was a d-dimensional nearest neighbor interaction, that
is, a discrete version of the Laplacian diffusion operator.
Here we will show that if £ introduces a morphological in-
stability and for appropriate choices of V,I’, the system un-
dergoes noise-induced phase transitions between disordered,
patterned, and multistable phases.

A key ingredient for pattern formation is a competition
between length scales. In a nearest neighbor model, there is
only one scale (the nearest neighbor distance), and so one
needs to modify the interaction to introduce a second scale.
We focus on a discrete version of the Swift-Hohenberg op-
erator [9,10], E:—D(k(2)+V2)2, but stress that this specific
form is not important, so long as the coupling leads to a
morphological instability associated with pattern formation.
We focus on the particular discretized form [5,7]

2\? ! Ax 9 ?
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0¥ Ax/) 3 st 2 dx; )

where Ax is the lattice spacing and d/dx; indicates a partial
derivative with respect to component i of the position vector
r=(x;,Xxy,...,X;,...,xg). This form arises naturally when one
recalls the action of the translation operator
exp(dxd/dx)f(x)=f(x+ x) on any function f(x). We can ob-
tain the discrete dispersion relation by applying the operator

(2) to a plane wave e’*”,

5 d 2
wlk)==D ké—(é) Esin2<%k,-> . (3)

i=1

Here k; denotes component i of the wave vector k
:(kl,kz,...,ki,...,kd).

The most unstable modes are those that maximize w(k).
These modes characterize the underlying spatial regularity
indicative of pattern formation. In the continuum, these are
the modes with k=k,. In the discretized system, the magni-
tudes k" of the most unstable modes are shifted from k, and
depend on direction. If k)Ax=< 1, then the range of variation
of these magnitudes is smaller than 3%. It is, therefore, only
a mild approximation to neglect the directional dependence
of the solutions as long as one keeps count of the number
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of modes that satisfy this condition. The count, detailed in
Refs. [5,7], leads to the number n(k")=[dm¥?/T(d/2+1)]
(NK*/27)%!

To capture a spatial structure, we must make an ansatz
about the modulated behavior of the field at locations r’
which are coupled to the focus point r by the operator £ [5]
as follows:

¢ = A(K) 2 coslk - (r—r")], @)

)
where the sum is over wave vectors of magnitude k* and all
modes are assumed to contribute with equal weight A(k”).
The action of the coupling operator on the ansatz state is

detailed in Ref. [5], whence one arrives at the result Lo,
=Dy[n(k") A(K") - ¢,], with

D —D[( 2d k2)2 i} 5
P a2 7)) Tt ©)

This then leads to an equation for the field that depends only
on a generic site index r that can simply be dropped

o= r(@{— —‘92(;”) ;

Dy[n" A"~ GD]} +[M(p]"ew).  (6)

We have set n(k")=n" and A(k")=.A". The noise &) is
zero-centered, Gaussian, and &-correlated in time,
(EDE))y=[d2/(Ax)¥]8(t—1"). We set Ax=1.

The mean amplitude A* must be chosen self-consistently
to complete the solution of the problem. The stationary prob-
ability density for our mean-field stochastic process is

pu(@in” A" = MT(g)] @
x exp{— %[V(go) + %(n*A* . ¢>2H, )

where the normalization constant A" depends on the ampli-
tude. The constant a is 0 (1/2) for the Itd (Stratonovich)
interpretation of the noise. Self-consistency is implemented
with the requirement that n" A" is the average value of the
field at any point in space,

nA = f ep(gsn”A")de, (8)

which is appropriate if the distribution is even in ¢ and thus
A"=0, or if n" A" is much larger than the (appropriately
phased) combined amplitudes of all the other modes. The
latter occurs if there is an instability that leads to the forma-
tion of a pattern.

The structure of the mean amplitude problem as given in
Eqgs. (7) and (8) is formally identical to that obtained for the
mean-field problem with diffusive coupling considered in
Ref. [6], as is the analytic characterization of the self-
consistent solutions. The information provided by the solu-
tions is of course different: in our previous work, the analysis
led to the mean-field that characterizes disordered and or-
dered global phases, whereas here it leads to the amplitude of
the least stable modes. There is, therefore, no need to repeat
that analysis, and it suffices to reiterate the “bottom line.” We
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FIG. 1. Generic local potentials V;(¢) and field-dependent coef-
ficients I';(¢) as a function of the field ¢. The solid lines are for i
=1 and the dotted lines for i=2.

limit ourselves to potentials V(¢) and relaxation functions
I'(¢) of even parity, and furthermore, without loss of gener-
ality, require that V(0)=0 and I'(0)=1.

The entire phase space panorama is captured by consider-
ing the four generic combinations obtained by picking one of
the two potentials and one of the two relaxation functions
illustrated in Fig. 1. While the specific choices

2 4 2
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have been made in the figure, only their general asymptotic
behavior and their behavior around the origin is important.
The four possible combinations then lead to phase diagrams
of the form shown in Fig. 2. These particular ones have been
calculated for the specific functions chosen for Fig. 1 with
the It6 interpretation in Eq. (7). The Stratonovich interpreta-
tion would merely shift the boundaries between phases.

To test the qualitative features of the mean-field analysis
via numerical simulations, we look for evidence of the three
distinct transitions predicted by our theory: (1) O— D (con-
tinuous transition from order to disorder), (2) D— O (con-
tinuous transition from disorder to order), and (3) D—M
(discontinuous transition from disorder to multistability).
The distinction between transitions (1) and (2) is made so as
to highlight the drastically different consequences of noise in
the various phases. We do not separately consider the M
— O transition since it is also marked by the destabilization
of the zero amplitude solution and, therefore, closely re-
sembles transition (2). To cover the three transitions, we
consider the three representative cases [V,(¢),I»(¢)],
[Vi(e),I5(e)], and [V,(¢),T";(¢)], which should exhibit (1),
(2), and (3), respectively, as noise intensity is increased for
an appropriate coupling coefficient D, (see Fig. 2). The case
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FIG. 2. Mean-field phase diagrams as a function of the local
potentials and field-dependent kinetic coefficients illustrated in Fig.
1. The labels D, O, and M within the diagrams respectively denote
disordered, ordered (patterned), and multistable phases (in the latter,
both the disordered and ordered phases are stable and can, there-
fore, in principle, coexist). The small open circle in the phase dia-
gram for I'j and V| where the three phases merge indicates an
isolated singular critical point (triple point) where a continuous
phase transition between disordered and ordered phases occurs (see
Ref. [6]).

[Vi(¢),I'»(¢)] was considered in our previous work, but
with the Stratonovich interpretation for the noise [5].

We perform our simulations on a lattice of size L=NAx
=128 with Ax=1, ky=1, and Ar=0.005. The magnitude of
the least stable wave vectors is then k*~1.035. With one
exception (noted later), we use von Neumann-Dirichlet
boundary conditions, that is, the field and its normal deriva-
tive are zero at the boundaries. We use an adapted Heun-like
algorithm appropriate for an Itd interpretation of the noise
[11], and in calculating order parameters, we typically con-
sider time averages obtained once the system has reached a
steady state. Our results are essentially identical for different
realizations of the noise, so that it is sufficient to present the
time-averaged results for any single realization.

There are different ways to characterize pattern formation.
For this purpose, we introduce the Fourier transform ¢, of
the field ¢,, 3,=(1/N9)2, ¢, exp(=ik-r). One quantity com-
monly invoked for the characterization of patterns is the
power spectrum at wave vectors of magnitude k,S(k)
=Z{k}<7>k$_k, where the sum runs over all modes of magni-
tude k (in our discretized system, the sum includes all wave
vectors whose magnitude lies in a ring of width 27/L cen-
tered on k). Another is the flux of convective heat, J
=(1/Nd)2,¢f. The functional relation between these two
quantities is simply J=2,S(k), where the sum runs over the
magnitudes of the modes. One order parameter is S(k”) (or,
more accurately, the average of S(k") over realizations of the
noise but, as noted earlier, we find that different realizations
of the noise lead to essentially identical results), which re-
flects the total contribution of the most unstable modes to the
flux of convective heat. Our mean-field theory provides the
result S(k")=n(k").A%(k") [8]. Another order parameter is the
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FIG. 3. (Color online) Relative power spectrum for the continu-
ous disordering transition with [V,(¢),I'>(¢)] and D=0.5. The
snapshots on the right are steady-state configurations for ¢°=10, 1,
and 0.25 from top to bottom. Insets show snapshots of the Fourier
structure of the field. Upper right inset: power spectrum S(k”).

relative power spectrum S(k")/J, which measures the relative
contribution of the least stable modes to the total flux. It
provides information on the coherence of the pattern that the
simple order parameter S(k”) cannot provide. The mean-field
theory gives J=S(k") since it only deals with the most un-
stable modes. A meaningful prediction of J would require the
ability to determine the power spectrum for all wave vector
magnitudes. We exhibit both order parameters as obtained
from our numerical simulations.

Consider first the case (V,,I',). This is the least interest-
ing case since it exhibits patterns only at small noise inten-
sities, with a transition to a disordered state as the noise
intensity is increased. Nevertheless, this is a good example to
illustrate the information in the two different order param-
eters and, for that matter, one where the limitations of the
mean-field theory become apparent. In the top right inset in
Fig. 3, we see the initial decrease of S(k) to zero and the
associated disappearance of spatial structure, as predicted.
While the mean-field theory does not quantitatively predict
the transition parameter values, it does lead to the correct
qualitative behavior. The order parameter does not remain at
zero after the transition, as the mean-field theory would pre-
dict, instead increasing again for larger values of the noise.
However, note that as seen in the insets showing the Fourier
structure of the spatial configurations, in spite of this in-
crease in the order parameter, the system does not again be-
come ordered with increasing noise because modes other
than those of magnitude k* become unstable as well. The
coherence of the pattern is seen to decrease as the ring of
most unstable modes becomes thicker, effectively eliminat-
ing the spatial structure visible at low values of the noise.
This incoherent configuration consisting of many modes is
not captured by the mean-field theory, which is valid only
near the bifurcation point. The increasing incoherence with
increasing noise is evident in the other order parameter,
S(k*)/J, which continues to decrease with increasing noise.

Next, consider the case (V;,I;), predicted to exhibit a
continuous, pattern-forming transition with increasing noise.
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FIG. 4. (Color online) Power spectrum for the continuous
disorder-order transition with [V,(¢),I'»(¢)] and D=3. The snap-
shots on the right are the steady-state configurations for o?=3, 1.75,
and 0.75 from top to bottom. Insets: Fourier transforms of the field.

In fact, as evidenced in Fig. 4, increasing the noise for a
given value of the coupling constant leads to increasingly
visible spatial structure and an ever-intensifying ring of un-
stable wave vectors. As predicted, the transition is continu-
ous and points to the ordering role of noise in the develop-
ment of spatial structure.

Finally, we consider the more complex and interesting
disorder-multistability transition predicted with the combina-
tion (V;,I";). Our theory predicts the occurrence of multista-
bility and hysteresis characteristic of a first-order phase tran-
sition. To test for the requisite memory of initial conditions,
we perform simulations in two directions. In one case, we
start from a homogeneous zero-field state and systematically
increase ¢°. In the other, we start from the patterned steady
state occuring for high noise intensity and decrease o°. In
each instance, we use the steady state obtained for the pre-
vious value of o2 (either above or below the current one) as
the initial state for the subsequent simulation. In order to
ensure the timely appearance of a clear pattern, in these
simulations we have implemented periodic boundary condi-
tions. Figure 5 demonstrates two clearly different states for
the same values of the parameters depending on the initial
condition. Hysteresis is also apparent in the marked depen-
dence of S(k*) on the initial condition. We have ascertained
this same behavior for various realizations of the noise and
have also ascertained that hysteresis is only observed in a
limited range of parameter values. In particular, for fixed D,
the uniform solution becomes unstable with increasing noise
and the system passes into the purely ordered phase.

We have developed a comprehensive theory of noise-
induced phase transitions to patterned states in single-field
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FIG. 5. Snapshots of the field for [V,(¢),T";(¢)] that illustrate
hysteresis in the discontinuous disorder-order transition with D=5
and 0?=3.10. The initial condition is uniform in the top panel and a
strongly patterned state in the bottom panel. Boundary conditions
are periodic. See text for more detailed description of simulation
sequence. The insets show the power spectrum S(k) as a function of
k.

relaxational systems with field-dependent coefficients. Our
previous work on this subject focused on a particular system
[5], which is here generalized to a broad classification of the
geometric properties of the potential function and the relax-
ational function that lead to one of four possible phase dia-
grams. Pattern formation requires a length scale competition
that we capture via a discrete version of the Swift-Hohenberg
coupling. Our comprehensive theory parallels that developed
for single-field relaxational systems with nearest neighbor
coupling [6]. The theoretical analysis is carried out via a
mean-field theory modified from the simplest form by the
inclusion of spatial modulation. A linear stability analysis
then yields the dispersion relation from which one extracts
the most unstable modes. Numerical results confirm the
qualitative validity of the theory.
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